CPSC 513 Winter 2010 Midterm: Solutions

1. (a) Define what it means for a function to be computable.

A function $f: \mathcal{N}^m \to N$ is computable if it is total, and there exists a program P such that $\psi_P(x_1 \dots x_m) = f(x_1 \dots x_m)$.

(b) Show that the function

 $f(x) =$ the largest n such that $n^3 \leq x$

is computable.

We could write a program to show that this function is computable, but instead we will show it it is primitive recursive (and hence computable). The function f is given by

$$
(\min_{n \le x} (n^3 > x)) - 1
$$

as this calculates the smallest *n* for which $n^3 > x$, then subtracts 1, giving the largest *n* such that $n^3 \leq x$. By results from class, the above expression is primitive recursive, so f is primitive recursive and hence computable.

2. (a) Define what it means for a partial function to be μ -recursive.

A partial function is μ -recursive if it is given by a finite number of applications of composition, primitive recursion, and unbounded minimization to the initial functions.

(b) Show that every partially computable function is μ -recursive.

Let $f(x_1 \ldots x_n)$ be a partially computable function. By the Normal Form theorem, there exists a primitive recursive predictate R so that

$$
f(x_1 \ldots x_n) = l(\min_z R(z, x_1 \ldots x_n))
$$

Since R and l are primitive recursive, we are applying composition and unbounded minimization to primitive recursive functions; hence the result is μ -recursive. Thus, f is μ -recursive, as required.

3. Suppose a sequence $f(n)$ is given by $f(0) = 2$, $f(1) = 3$, $f(2) = 7$, and for $n > 2$,

 $f(n) = f(n-1) + f(n-2) + f(n-3).$

Show that $f(n)$ is primitive recursive.

We begin by defining a new function g given by

$$
g(n) = [f(n), f(n+1), f(n+2)]
$$

We will first show that g is primitive recursive. Indeed,

$$
g(0)=[2,3,7]\,
$$

and

$$
g(t+1) = [f(t+1), f(t+2), f(t+3)] = [g(t)_2, g(t)_3, g(t)_3 + g(t)_2 + g(t)_1]
$$

Since the index functions $(-)$ _i are primitive recursive, we have shown that g is given by applying primitive recusion to primitive recursive functions - hence g itself is primitive recursive.

Finally, since $g(n) = [f(n), f(n+1), f(n+2)]$, we have $f(n) = g(n)$ ₁. So, since g is primitive recursive, f is as well.

- 4. Give the statements of:
	- (a) the Universality Theorem,
	- (b) the Parameter Theorem.

The Universality Theorem states that the function

$$
\Phi(x_1 \ldots x_n, y) = \psi_P(x_1 \ldots x_n)
$$

(where the number of P is y) is partially computable.

The Parameter Theorem states that for any $n, m > 0$, there exists a primitive recursive function S_m^n such that

$$
\Phi(x_1 \ldots x_n, u_1 \ldots u_m, y) = \Phi(x_1 \ldots x_n, S_m^n(u_1 \ldots u_m, y).
$$

5. Let A and B be recursively enumerable sets. Show that the set

$$
A \cup B = \{x : x \in A \text{ or } x \in B\}
$$

is recursively enumerable.

Since A and B are recursively enumerable, there exist partially computable functions f, g so that $x \in A \Leftrightarrow f(x) \downarrow$ and $x \in B \Leftrightarrow g(x) \downarrow$. Suppose f is partially computed by the program with number p , and q by the program with number q . Then consider the following program:

(A) IF $STP(X, p, T)$ GOTO E IF $STP(X, q, T)$ GOTO E $T \leftarrow T + 1$ GOTO A

If either program p or program q terminates on input X , then this program terminates; otherwise, it runs forever. Thus, this program halts exactly when $X \in A$ or $X \in B$, and so $A \cup B$ is recursively enumerable.

6. (a) State Rice's Theorem.

Suppose Γ is a set of partially computable functions so that there exists some functions f, g with $f \in \Gamma$ and $g \notin \Gamma$. Then the set $R_{\Gamma} := \{n : \Phi_n \in \Gamma\}$ is not recursive.

(b) Let $W_x = \{n : \Phi(n, x) \downarrow\}$. Show that the sets

 ${x : W_x$ is infinite} and ${x : W_x}$ is finite}

are not recursive.

By Rice's Theorem, it suffices to show that the set of infinitely-defined partially computable functions is non-trivial, and the set of finitelydefined partially computable functions is non-trivial. For the first, the function $f(x) = x$ is infinitely-defined, but the function $g(x)$ which is undefined everywhere is not. For the second, the function $f(x)$ which is undefined everywhere is finitely-defined, and the function $g(x) = x$ is not finitely-defined. Thus, in both cases, the sets are not recursive.