
Assignment 5: Recursion Theorem, Strings, Tur-

ing Machines

1. (a) Use the Recusion theorem to show that there is a partially com-
putable function f that satisfies the equations

f(x, 0) = x + 2

f(x, 1) = 2f(x, 2x)

f(x, 2t + 2) = 3f(x, 2t)

f(x, 2t + 3) = 4f(x, 2t + 1)

(b) Show that f is total.

(a) We begin by defining a function to which we will apply the recursion
theorem. Define

F (z, x, y) =















x + 2 if y = 0;
2Φz(x, 2x) if y = 1;
3Φz(x, y − 2) if (∃t ≤ y)(y = 2t + 2);
4Φz(x, y − 2) if (∃t ≤ y)(y = 2t + 3)

.

Since F is defined using cases and the universal functions, it is par-
tially computable. Thus, by the recursion theorem, there exists a
number e so that Φe(x, y) = F (e, x, y). Then by definition of F ,

Φe(x, 0) = x + 2;

Φe(x, 1) = Φe(x, 2x)

Φe(x, 2t + 2) = 3Φe(x, 2t)

Φe(x, 2t + 3) = 4Φe(x, 2t + 1)

Thus, the partially computable function Φe satsifies the required con-
ditions.

(b) We will show that f(x, t) is total by first showing that it is defined for
all even t, then for all odd t. Each of these will be proven by induc-
tion. Thus, we begin by showing that for any t, f(x, 2t+2) is defined.
The base case is f(x, 0), which is x + 2, so it is defined. Assuming
we know that f(x, 2t + 2) is defined, then f(x, 2t + 4) is also defined
since f(x, 2t+4) = 3f(x, 2t+2). Thus, f(x, t) is defined for all even t.

We know prove that f(x, t) is defined for all odd t. The base case is
f(x, 1). This equals 2f(x, 2x), which have proven is defined, since 2x

is always even. Assuming we know that f(x, 2t + 1) is defined, then
f(x, 2t + 3) is also defined since it equals 4f(x, 2t + 1). Thus, f(x, t)
is defined for all odd t. Thus f(x, t) is defined for all values.

1



2. Determine the following:

(a) for the alphabet {s1, s2}, the number of the string: s1s2s1s2;

(b) for the alphabet {s1, s2, s3}, the number of the string: s3s2s3s1;

(c) for the alphabet {s1, s2}, the string with number 100;

(d) for the alphabet {s1, s2, s3, s4}, the string with number 100.

(a) For the alphabet {s1, s2}, the number of s1s2s1s2 is

(2)3(1) + (2)2(2) + (2)(1) + 2 = 20

(b) For the alphabet {s1, s2, s3}, the number of s3s2s3s1 is

(3)4(3) + (3)3(2) + (3)(3) + 1 = 271

(c) To calculate the string in {s1, s2} with number 100, we must first
find the ui values of 100 relative to 2:

u0 = 100, u1 = Q+(100, 2) = 49, u2 = Q+(49, 2) = 24,

u3 = Q+(24, 2) = 11, u4 = Q+(11, 2) = 5, u5 = Q+(5, 2) = 2, u6 = Q+(2, 2) = 0.

We then find the i values:

i0 = R+(100, 2) = 2, i1 = R+(49, 2) = 1, i2 = R+(24, 2) = 2,

i3 = R+(11, 2) = 1, i4 = R+(5, 2) = 1, i5 = R+(2, 2) = 2.

Thus the string is
s2s1s1s2s1s2

(d) To calculate the string in {s1, s2, s3, s4} with number 100, we must
first find the ui values of 100 relative to 4:

u0 = 100, u1 = Q+(100, 4) = 24,

u2 = Q+(24, 4) = 5, u3 = Q+(5, 4) = 1, u4 = Q+(1, 4) = 0.

We then find the i values:

i0 = R+(100, 4) = 4, i1 = R+(24, 4) = 5,

i2 = R+(5, 4) = 1, , i3 = R+(1, 4) = 1.

Thus the string is
s4s4s1s1

2



3. Let f be a function {s1, · · · , sn}
∗ → {s1, · · · sn}

∗ which returns s1 if a
string w has a even number of symbols, and 0 otherwise. Write a program
in Pn that computes the function f .

We write a program that begins with Y = 0, then alternates back and
forth between 1 and 0 as it goes through the string. As it passes through
the string, it deletes the characters of the string until nothing is left, then
returns that value of Y :
(A) IF X 6= 0 GOTO B

GOTO E

(B) IF Y ends s1 GOTO C

Y ← s1Y

X ← X−

GOTO A

(C) Y ← Y −

X ← X−

GOTO A

4. Write a Post-Turing program using that strictly computes the function
s(x) = x+1 relative to {s1, s2} (that is, its input is a string w ∈ {s1 . . . s2},
and its output is the string in {s1, s2} corresponding to the number of w

+ 1).

The Post-Turing program must perform addition by 1, so it begins at the
end of the string, and changes a blank to s1, an s1 to an s2. However, if
it reads an s2, it must read the next character and check again (that it, it
carries the 1 until it no longer reads an s2). Finally, we must also ensure
that it ends with the pointer to the left of the data. The program:
RIGHT TO NEXT BLANK

(A) LEFT

IF s2 GOTO A

IF s1 GOTO B

PRINT s1

LEFT TO NEXT BLANK

GOTO E

(B) PRINT s2

LEFT TO NEXT BLANK

5. If u 6= 0, let n(u, v) be the number of occurrences of u as a part of v (for
example, u(ba, ababaa) = 2); and let u(0, v) = 0. Give a Turing machine
that strictly computes n.

Consider the following Pm-program:
(T) j ← i

Z1 ← X1

Z2 ← X2

3



(L) IF j = 0 GOTO C

j ← j − 1
Z1 ← Z−

1

GOTO L

(C) IF Z2 ends si GOTO Li

(L0) IF Z1 ends s0 GOTO H

(Li) IF Z1 ends si GOTO A GOTO F

(A) Z−

1

Z−

2

GOTO C

(H) Y ← Y + 1
(F) i← i + 1
IF i + 1 < length(X1) GOTO T

This program calculates n, by succesively looking through parts of the
string X1, and determining if that part is the same as X2. It then returns
the number of those occurences. In class, we saw that any Pm program
could be translated into a strict Post-Turing program, and any Post-Turing
program can be translated into a strict Turing machine. Thus, we take the
above program, apply the two translations, and we get a Turing machine
which strictly computes n.

4


