Assignment 5: Recursion Theorem, Strings, Turing Machines

This assignment is due Monday, April 5th, at the beginning of class (9:00am).

1. (a) Use the Recusion theorem to show that there is a partially computable function f that satisfies the equations

$$f(x,0) = x + 2$$

$$f(x,1) = 2f(x,2x)$$

$$f(x,2t+2) = 3f(x,2t)$$

$$f(x,2t+3) = 4f(x,2t+1)$$

- (b) Show that f is total.
- 2. Determine the following:
 - (a) for the alphabet $\{s_1, s_2\}$, the number of the string: $s_1s_2s_1s_2$;
 - (b) for the alphabet $\{s_1, s_2, s_3\}$, the number of the string: $s_3s_2s_3s_1$;
 - (c) for the alphabet $\{s_1, s_2\}$, the string with number 100;
 - (d) for the alphabet $\{s_1, s_2, s_3, s_4\}$, the string with number 100.
- 3. Let f be a function $\{s_1, \dots, s_n\}^* \to \{s_1, \dots, s_n\}^*$ which returns s_1 if a string w has a even number of symbols, and 0 otherwise. Write a program in P_n that computes the function f.
- 4. Write a Post-Turing program using that strictly computes the function s(x) = x+1 relative to $\{s_1, s_2\}$ (that is, its input is a string $w \in \{s_1 \dots s_2\}$, and its output is the string in $\{s_1, s_2\}$ corresponding to the number of w + 1).
- 5. If $u \neq 0$, let n(u, v) be the number of occurrences of u as a part of v (for example, u(ba, ababaa) = 2); and let u(0, v) = 0. Give a Turing machine that strictly computes n.