
Assignment 4: Parameter Theorem, R.E. Sets,

Reducibility, Rice-Shapiro Theorem

This assignment is due Friday, March 12th, at the beginning of class (9:00am).

1. Suppose that f : N → N is a strictly increasing function: in other words,
f(n + 1) > f(n) for all n ∈ N . Prove that the set

B = {f(n) : n ∈ N}

is recursive.

Consider the following program:

(A) IF f(Z) = X GOTO B

IF f(Z) > X GOTO E

Z ← Z + 1
GOTO A

(B) Y ← Y + 1
(E)

The program runs through every value of Z. If f(Z) < X , it continues
running. If f(Z) = X , it halts with value 1. If f(Z) > X , then for no
higher value of Z will X = f(Z) (since f is strictly increasing), so it halts
with value 0. Thus, the program computes PB, so B is recursive.

2. Show that every infinite recursively enumerable set B has an infinite sub-
set B′ ⊆ B which is recursive (hint: use the previous question).

Since B is recursively enumerable, there exists a primitive recursive func-
tion f so that B = {f(n) : n ∈ N}. Consider the function g defined by
the primitive recursion equations:

g(0) = f(0)

g(t + 1) = f [minz(f(z) > f(t))]

Since g is µ-recursive, it is partially computable. However, note that the
minimization always exists: if it didn’t, there would be some value f(n) so
that no element of B is higher than f(n): but this is impossible, since B

is infinite. Thus, the function g is actually computable, not just partially
computable. Moreover, the definition requires that g(t + 1) > g(t), so g is
increasing. Let B′ = {g(n) : n ∈ N}. Then by the previous question, B′

is recursive, since g is a strictly increasing computable function. Finally,
since g(t) is always f(z) for some z, g(t) is always in B, so B′ is an infinite
subset of B, as required.

1



3. Suppose A and B are subsets of N . Prove the following properties of
many-one reducibility:

(a) A ≤m B if and only if Ā ≤m B̄;

(b) if A and B are m-complete, then A ≡m B;

(c) if A is m-complete, then A is not recursive.

(a) If A ≤m B, then there exists a computable f so that x ∈ A⇔ f(x) ∈
B. But this means that x 6∈ A ⇔ f(x) 6∈ B. So, using the same f ,
Ā ≤m B̄. Similarly, if Ā ≤m B̄, we can use the same f to show
A ≤m B.

(b) Since A is m-complete and B is RE., B ≤m A. Similarly, since B is
m-complete and A is RE, A ≤m B. Thus A ≡m B.

(c) Since K is RE and A is m-complete, K ≤m A. But K is not recursive,
so A is not recursive either.

4. Let INF = {x ∈ N : Wx is infinite}. Show that TOT ≡m INF.

To show TOT ≡m INF, we need to show that TOT ≤m INF, and INF
≤M TOT. We begin with TOT ≤m INF. To show this, we want to find
a program with some number q such that Φq(x, p) is defined for infinitely
many x if and only if Φp(x) is defined for all x. We can then use the pa-
rameter theorem to get a computable function that shows TOT ≤m INF.
We define the program Q by:

(A) IF Z > X1 GOTO E

Y ← Φ(Z, X2)
Z ← Z + 1
GOTO A

(E)

Let q be the number of this program. This program terminates exactly
when the program with number X2 is defined for every Z ≤ X1. Now,
suppose that the program with number p is total. Then for any x, ΦQ(x, p)
is defined. Conversely, suppose the program with number p is not total.
Then it is undefined at some x0. Then for any x ≥ x0, the program Q

will not halt, so Φq(x, p) is not defined for infinitely many x (all x ≥ x0).
Thus, we have that Φq(x, p) is defined for infinitely many x if and only if
Φp(x) is total. Let q be the number of the program Q. We then have:

p ∈ TOT ⇔ Φp(x) defined for all x

⇔ Φq(x, p) defined for infinitely many x (by the argument above)

⇔ Φ(x, p, q) defined for infinitely many x

⇔ Φ(x, S1

1
(p, q)) defined for infinitely many x (using the parameter theorem)

⇔ S1

1
(p, q) ∈ INF.

2



So if we let f(p) = S1

1
(p, q), then f is computable by the parameter theo-

rem, and p ∈ TOT⇔ f(p) ∈ INF. Thus, TOT ≤m INF, as required.

To show INF ≤M TOT, we need to find the opposite: a program with
number q so that Φq(x, p) is defined for all x if and only if Φp(x) is defined
for infinitely many x. To do this, we need a program that keeps track of
how many values a program p is defined for. However, we cannot do this
directly, in a computable way. Instead, we can only keep track of which
numbers have halted after a certain number of steps. Thus, we begin by
defining a primitive recursive function H :

H(n, p) =

n∑

i=0

STP(i, n, p)

For a program with number p, H(n, p) determines how many numbers less
than or equal to n the program p halts with after n or fewer steps. We
then define a µ-recursive function g:

g(x, p) = min
z

H(z, p) > H(x, p)

For a program with number p, g(x, p) finds the next time that the program
p halts with some number z by z steps.

Since g is µ-recursive, it is partially computable, so it is represented by
some program with number q. We claim that Φq(x, p) is defined for all x

if and only if Φp(x) is defined for infinitely many x. Indeed, suppose the
program with number p is defined for infinitely many x. We need to show
that for any x, g(x, p) is defined. Since p is defined for infinitely many x,
there exists a y > x so that p halts on input y. Say it halts after t steps.
Then define z = max(y, t). Then f(z, p) > f(x, p), since z > x and p halts
after z or fewer steps on input z. Thus, the minimization for g does exist,
so g(x, p) is defined.

Conversely, suppose that the program with number p is only defined for
finitely many x, say for values x0 · · ·xn, which halt after t0 · · · tn steps.
Let x = max(x0 · · ·xn, t0 · · · tn). Then for every i, program p halts after
x or fewer steps on each xi. So f(x, p) = n. But then g(x, p) is undefined,
since there is no z with f(z, p) > n (p is only defined for n values). Thus,
Φq(x, p) is not defined for all x.

So, we have:

p ∈ INF ⇔ Φp(x) defined for infinitely many x

⇔ Φq(x, p) defined for all x (by the argument above)

⇔ Φ(x, p, q) defined for all x

3



⇔ Φ(x, S1

1
(p, q)) defined for all many x (using the parameter theorem)

⇔ S1

1
(p, q) ∈ TOT.

So if we let f(p) = S1

1
(p, q), then f is computable by the parameter theo-

rem, and p ∈ INF⇔ f(p) ∈ TOT. Thus, INF ≤m TOT, as required.

5. Show that each of the following sets are not recursively enumerable by
using the Rice-Shapiro Theorem:

(a) INF = {x ∈ N : Wx is infinite};

(b) FIN = {x ∈ N : Wx is finite};

(c) PREDICATE = {x ∈ N : Φx is a predicate}.

(a) Suppose that INF was recursively enumerable. Let A be the set of
partially computable functions which are defined for infinitely many
values. Then by the Rice-Shapiro theorem, if f ∈ A, there exists a
finite function θ, θ ≤ f , and θ ∈ A. But this is a contradiction, since
a finite function cannot be defined for infinitely many values.

(b) Suppose that FIN was recursively enumerable. Let A be the set of
partially computable functions which are defined for finitely many
values. In particular, the empty function n (undefined for all values)
is in A. The function f(x) = x has the property that n ≤ f . Then
by the Rice-Shapiro theorem, since n ≤ f and n ∈ A, f ∈ A. But
this is a contradiction, since f is defined for all values, but A only
consists of functions defined for finitely many values.

(c) Suppose that PREDICATE was recusively enumerable. Let A be the
set of partially computable functions which are predicates. By the
Rice-Shapiro theorem, for any f ∈ A, there exists a finite function θ,
θ ≤ f , and θ ∈ A. But this is a contradiction, since a finite function
cannot be a predicate (which are always total).

4


