
Assignment 3: Numbering and Universal Pro-

grams: Solutions

1. The Fibonacci sequence is given by

• F (0) = 0,

• F (1) = 1,

• F (n + 2) = F (n + 1) + F (n).

Show that F is primitive recursive. (Hint: use the pairing function).

We cannot directly give recursion equations for F , since it has two base
cases, and is recursively defined by two of its previous terms, rather than
just one. Instead, we define a new sequence K(n) by

K(n) =< F (n), F (n + 1) >,

and show that K is primitive recursive. Since F (n) = l(K(n)), and l is a
primitive recursive function, this will show that F is primitive recursive.

We will show that K is primitive recursive by giving recursion equations
for it:

K(0) =< 0, 1 >

and

K(t + 1) = < F (t + 1), F (t + 2) >

= < r(K(t)), F (t + 1) + F (t) >

= < r(K(t)), r(K(t)) + l(K(t)) > .

Since r, l, and + are primitive recursive, this shows that K is primitive
recursive. Then, since F (n) = l(K(n)), F is primitive recursive as well.

2. A function f is given by “unnested double recursion” if there are functions
g1, g2, h such that

• f(0, y) = g1(y),

• f(x + 1, 0) = g2(x),

• f(x + 1, y + 1) = h(x, y, f(x, y + 1), f(x + 1, y)).

Show that if g1, g2, and h are all in some PRC class C, then so is f . (Hint:
use the functions [a1, · · ·an]).

Again, since f is defined by “double recursion”, we cannot show that it
is primitive recursive directly. Instead, we will define a new function,

1



show that this is primitive recursive, and use this to prove f is primitive
recusive. We define K by

K(n) = [l0 · · · ln]

where
li = [f(i, 0), f(i, 1), · · ·f(i, n− i)]

Essentially, K(n) contains all of the values f(a, b) for which a + b ≤ n.
Note that f(m, n) = (K(m + n)m)n, so if we can prove that K belongs to
the class C, then so will f .

So, we need to show that K belongs to C. We will show that it is given
by recursion equations of functions in C. We have:

K(0) = [[f(0, 0)]] = [[g1(0)]]

and:
K(t + 1) = [l0, · · · lt+1]

but each of the li’s can be found in terms of K(t) and the gi’s. Indeed,

l0 = [g1(0), g1(1), · · · g1(n + 1)]

and for i > 0,
li = [f(i, 0), f(i, 1), · · ·f(i, n− i)]

but f(i, 0) = g2(i− 1) and for 1 ≤ k ≤ n− i,

f(i, k) = h(i− 1, k − 1, (K(n)i−1)k, (K(n)i)k−1)).

Thus, K has a recursion equation given by functions of g1, g2, and h. Thus,
since each of these are in C, so is K.

Thus, since f(m, n) = (K(m + n)m)n, K is in C, and the subscript func-
tions are primitive recursive, f is in C, as required.

3. Suppose the number of the program P is (246)(30)(52)(737)−1. Write out
the code for P , and determine what it returns if given the input X1.

By the definition of the number of the program, the above number tells
us that the program has four lines, with instructions corresponding to the
numbers 46, 0, 2, and 37.

For 46, the largest number x such that 2x divides 46 + 1 is 0. The y such
that 2y + 1 = 47 is 23. Thus, 46 =< 0, 23 >. The largest x such that 2x

divides 23 + 1 is 3 (8 divides 24). Then the y such that 2y + 1 = 3 is 1.
Thus, 46 =< 0, < 3, 1 >>. The 0 tells us the instruction is unlabelled, the

2



1 that the variable is X1, and the 3 says that the instruction is IF X1 6= 0
GOTO L1.

An instruction with number 0 is simply Y ← Y .

For 2, the largest x such that 2x divides 2 + 1 is 0. The y such that
2y + 1 = 3 is 1. Thus, 2 =< 0, 1 >. The largest x such that 2x divides
1 + 1 is 1, and the y such that 2y + 1 = 0 is 0. Thus 2 =< 0, < 1, 0 >>.
The instruction is unlabelled, the variable is Y , and the instruction is an
addition: Y ← Y + 1.

For 37, the largest x such that 2x divides 37 + 1 is 1. The y such that
2y + 1 = 38/2 = 19 is 9. Thus 37 =< 1, 9 >. The largest x such that
2x divides 9 + 1 is 1. The y such that 2y + 1 = 10/2 = 5 is 2. Thus
37 =< 1, < 1, 2 >>. Thus, the instruction is labelled with L1, and the
instruction itself is to increment the number 2 variable, which is Z1. Thus,
the instruction is Z1 ← Z1 + 1.

In total, the program is:
IF X1 6= 0 GOTO L1

Y ← Y
Y ← Y + 1
(L1) Z1 ← Z1 + 1

Thus, the program returns 1 if X1 = 0, and 0 if X1 6= 0.

4. Suppose we define a predicate H(x), which is true exactly when the pro-
gram with number r(x) halts on input l(x). Show that H is not com-
putable.

Suppose for contradiction that H was computable. By definition of the
HALT predicate, HALT(x, y) = H(< x, y >). Since < x, y > is primi-
tive recursive and H is computable, this would imply that HALT is also
computable. But we have shown in class that it is not computable. Con-
tradiction: thus H is not computable.

5. Suppose that f(x1, · · ·xn) is computable by some program P . Suppose
we also know that there is some primitive recursive function g(x1, · · ·xn)
such that

STP(n)(x1, · · ·xn, #(P ), g(x1, · · ·xn))

is always true. Show that f is primitive recursive. (In other words, if the
amount of time the program takes to run is bounded by some primitive
recursive function, then the original function is primitive recursive).

3



By the normal form theorem, there is a primitive recursive predicate R
such that

f(x1 · · ·xn) = l(minzR(x1 · · ·xn, z))

However, if we know that the program always terminates by g(x1 · · ·xn)
steps, then we can replace the unbounded minimization in the above by
the bounded minimization

f(x1 · · ·xn) = l(min(z ≤ g(x1 · · ·xn))R(x1 · · ·xn, z)

Since l, g, and R are all primitive recursive and the minimization is bounded,
we thus have that f is primitive recursive, as required.

4


