Assignment 2:
More Programs and Primitive Recursive Func-
tions: Solutions

1. Let P(z) be a computable predicate. If f is defined by

a1t a if P(ay 4 @)
f(z1,20) = { 1 otherwise.

show that f is partially computable.

The following program computes f:

Y — X7+ Xo

(4) IF P(Y) GOTO E
GOTO A

(E)

Note that since P is computable, the second line is a valid macro. The
program first sets Y to X; + X5. If P sends this value to 1, then the pro-
gram exits. Otherwise, it gets into an infinite loop, and is thus undefined
otherwise. Thus, the program partially computes f.

2. For any isomorphism f : X — Y, one can define an inverse function
71X =Y, where f~1(z) is the unique number y such that f(y) = z.
Suppose that f : N'— A is an isomorphism and computable. Prove that
£~ is also computable.

To compute f~!, we do the following. We begin with y = 0, and check if
f(y) = x. If this is the case, we exit, with y = 0. Otherwise, we increment
y, and check again if f(y) = x. We continue to do this until we find a
value y such that f(y) = . Such a value must exist (and be unique) since
f is an isomorphism. We make use of the computable predicate Z; = X,
and the computable function f in the program:

(A Zy « f(Y)

IF Z1 = X; GOTO E
Y —~Y+1

GOTO A

(E)

3. The language P has only three instructions: increment, decrement, and
loop if a variable is non-zero. But there are other reasonable choices for
a simple programming language. Another choice is a language P’ which
has variables and labels just like P, but has these three instructions:



VeV

V—V+1

IF V # V' GOTO L

(where V, V' are variables, and L is a label). Show that P’ is equivalent
to P, in the sense that a function f is partially computable in P if and
only if it is partially computable in P’.

First, we show that every function partially computable by P’ is partially
computable by P. To do this, we must give macros in P for each of the
three instructions in the language P’. Then, if f is partially computable
by some program P’ in P’, we simply use the same program in P, replacing
each basic instruction of P’ with a macro in P. We already have macros
in P for the first two instructions in P’. For the third instruction, we can
make such a macro provided we can show that the predicate X; # X5 is
computable. But this predicate is simply a(X; = X3). Both these predi-
cates are PR; thus X; # X5 is as well, and thus also computable. Thus,
any instruction in P’ corresponds to a macro in P, and so any function
partially computable by P’ is partially computable by P.

To complete the proof, we must show the converse, that any function
partially computable in P is partially computable in P’. Thus, we must
make macros in P’ for each of the three instructions in P. The first basic
instruction in P (V « V + 1) is the same as the second basic instruction
in P’, so that is done.

The second basic instruction in P is V « V — 1. To get a macro for this
in P/, we must increment Y until it is 1 less than X;. To do this, however,
it will be helpful to have the GOTO macro in P’. The following code in P’
has the effect of GOTO L:

L — L + 1

IF Zy # Zm+41 GOTO L

(where Z,,, and Z,, 41 are variables that do not exist in the main program).

The following code decreases Y until it is one less than X;; with the
variable Z; keeping track of when Y + 1 is equal to X;:

IF Y # X; GOTO A

GOTO E

(A) Zl — Zl —+ 1

IF Z, # X, GOTO B

GOTO E

B)Y—Y+1

GOTO A

(E)

Thus, this gives a macro for V « V — 1.



4.

5.

The third basic instruction, IF V # 0 GOTO L in P is given by the fol-
lowing macro in P’: IF V # Z,, GOTO L, where Z,, is a variable not in
use in the rest of the program. Since it is not in use, it is initialized to 0,
and so the macro does compute IF V £ 0 GOTO L as required.

Thus, any function partially computable in P is partially computable in
P’, and so the two languages are equivalent, as required.

(a) For any n, prove that the function f(x) = 2™ is primitive recursive.

(b) Using part (a) and induction, prove that any polynomial function
f(x) =a,z" + anflxn_l +--t+axr+ao
is primitive recursive (each a; is a natural number).

(a) First, for any number z, the function y — « -y is primitive recursive.
The function 2™ is given by composing this function with itself n
times, and is thus itself primitive recursive.

(b) The proof is by induction on the degree of the polynomial, n. In the
base case, f(x) = ag for some natural number ag. We saw in class
that this function is PR.

Now, assume the induction hypothesis: any polynomial g(z) = a,z™+
an_ 12" 1+ +ajr+ag is PR. Let f(z) = app12" M +aa™+- -+
a1z + ag be a polynomial of degree n + 1. We must show it is PR
as well. But f(z) = ap412" ™! + g(z). We know that multiplication,
addition, and g(x) are all PR; thus, f is as well. Thus, by induction,
any polynomial is PR.

Let 7(z) be the number of primes less than or equal to 2. Show that m(x)
is computable.

First, we will show that 7(z) is a primitive recursive function. The number
of primes less than or equal to x 4+ 1 is given by the number of primes less
than or equal z, plus 1 if z + 1 is a prime. Thus, w(x) is given by the
recursion equations

m(0) =0, w(t+1) = (t) + prime(t + 1)

Since + and prime are primitive recursive, so is w. Finally, since an
b) b
primitive recursive function is computable, 7 is computable.



