
Assignment 2:

More Programs and Primitive Recursive Func-

tions: Solutions

1. Let P (x) be a computable predicate. If f is defined by

f(x1, x2) =

{

x1 + x2 if P (x1 + x2);
↑ otherwise.

show that f is partially computable.

The following program computes f :

Y ← X1 + X2

(A) IF P (Y ) GOTO E

GOTO A

(E)

Note that since P is computable, the second line is a valid macro. The
program first sets Y to X1 + X2. If P sends this value to 1, then the pro-
gram exits. Otherwise, it gets into an infinite loop, and is thus undefined
otherwise. Thus, the program partially computes f .

2. For any isomorphism f : X → Y , one can define an inverse function
f−1 : X → Y , where f−1(x) is the unique number y such that f(y) = x.
Suppose that f : N → N is an isomorphism and computable. Prove that
f−1 is also computable.

To compute f−1, we do the following. We begin with y = 0, and check if
f(y) = x. If this is the case, we exit, with y = 0. Otherwise, we increment
y, and check again if f(y) = x. We continue to do this until we find a
value y such that f(y) = x. Such a value must exist (and be unique) since
f is an isomorphism. We make use of the computable predicate Z1 = X ,
and the computable function f in the program:

(A) Z1 ← f(Y )
IF Z1 = X1 GOTO E

Y ← Y + 1
GOTO A

(E)

3. The language P has only three instructions: increment, decrement, and
loop if a variable is non-zero. But there are other reasonable choices for
a simple programming language. Another choice is a language P ′ which
has variables and labels just like P , but has these three instructions:

1



V ← V ′

V ← V + 1
IF V 6= V ′ GOTO L

(where V, V ′ are variables, and L is a label). Show that P ′ is equivalent

to P , in the sense that a function f is partially computable in P if and
only if it is partially computable in P ′.

First, we show that every function partially computable by P ′ is partially
computable by P . To do this, we must give macros in P for each of the
three instructions in the language P ′. Then, if f is partially computable
by some program P ′ in P ′, we simply use the same program in P , replacing
each basic instruction of P ′ with a macro in P . We already have macros
in P for the first two instructions in P ′. For the third instruction, we can
make such a macro provided we can show that the predicate X1 6= X2 is
computable. But this predicate is simply α(X1 = X2). Both these predi-
cates are PR; thus X1 6= X2 is as well, and thus also computable. Thus,
any instruction in P ′ corresponds to a macro in P , and so any function
partially computable by P ′ is partially computable by P .

To complete the proof, we must show the converse, that any function
partially computable in P is partially computable in P ′. Thus, we must
make macros in P ′ for each of the three instructions in P . The first basic
instruction in P (V ← V + 1) is the same as the second basic instruction
in P ′, so that is done.

The second basic instruction in P is V ← V − 1. To get a macro for this
in P ′, we must increment Y until it is 1 less than X1. To do this, however,
it will be helpful to have the GOTO macro in P ′. The following code in P ′

has the effect of GOTO L:
Zm ← Zm + 1
IF Zm 6= Zm+1 GOTO L

(where Zm and Zm+1 are variables that do not exist in the main program).

The following code decreases Y until it is one less than X1; with the
variable Z1 keeping track of when Y + 1 is equal to X1:
IF Y 6= X1 GOTO A

GOTO E

(A) Z1 ← Z1 + 1
IF Z1 6= X1 GOTO B

GOTO E

(B) Y ← Y + 1
GOTO A

(E)

Thus, this gives a macro for V ← V − 1.

2



The third basic instruction, IF V 6= 0 GOTO L in P is given by the fol-
lowing macro in P ′: IF V 6= Zm GOTO L, where Zm is a variable not in
use in the rest of the program. Since it is not in use, it is initialized to 0,
and so the macro does compute IF V 6= 0 GOTO L as required.

Thus, any function partially computable in P is partially computable in
P ′, and so the two languages are equivalent, as required.

4. (a) For any n, prove that the function f(x) = xn is primitive recursive.

(b) Using part (a) and induction, prove that any polynomial function

f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0

is primitive recursive (each ai is a natural number).

(a) First, for any number x, the function y 7→ x · y is primitive recursive.
The function xn is given by composing this function with itself n

times, and is thus itself primitive recursive.

(b) The proof is by induction on the degree of the polynomial, n. In the
base case, f(x) = a0 for some natural number a0. We saw in class
that this function is PR.

Now, assume the induction hypothesis: any polynomial g(x) = anxn+
an−1x

n−1 + · · ·+a1x+a0 is PR. Let f(x) = an+1x
n+1 +anxn + · · ·+

a1x + a0 be a polynomial of degree n + 1. We must show it is PR
as well. But f(x) = an+1x

n+1 + g(x). We know that multiplication,
addition, and g(x) are all PR; thus, f is as well. Thus, by induction,
any polynomial is PR.

5. Let π(x) be the number of primes less than or equal to x. Show that π(x)
is computable.

First, we will show that π(x) is a primitive recursive function. The number
of primes less than or equal to x+ 1 is given by the number of primes less
than or equal x, plus 1 if x + 1 is a prime. Thus, π(x) is given by the
recursion equations

π(0) = 0, π(t + 1) = π(t) + prime(t + 1)

Since + and prime are primitive recursive, so is π. Finally, since any
primitive recursive function is computable, π is computable.

3


