Assignment 2: More Programs, and Primitive Recursive Functions

This assignment is due Friday, February 5th, at the beginning of class (9:00am).

1. Let P(x) be a computable predicate. If f is defined by

$$f(x_1, x_2) = \begin{cases} x_1 + x_2 & \text{if } P(x_1 + x_2); \\ \uparrow & \text{otherwise.} \end{cases}$$

show that f is partially computable.

- 2. For any isomorphism $f : X \to Y$, one can define an inverse function $f^{-1}: X \to Y$, where $f^{-1}(x)$ is the unique number y such that f(y) = x. Suppose that $f : \mathcal{N} \to \mathcal{N}$ is an isomorphism and computable. Prove that f^{-1} is also computable.
- 3. The language \mathcal{P} has only three instructions: increment, decrement, and loop if a variable is non-zero. But there are other reasonable choices for a simple programming language. Another choice is a language \mathcal{P}' which has variables and labels just like \mathcal{P} , but has these three instructions: $V \leftarrow V'$

$$V \leftarrow V + 1$$

IF $V \neq V' \ {\rm GOTO} \ {\rm L}$

(where V, V' are variables, and L is a label). Show that \mathcal{P}' is equivalent to \mathcal{P} , in the sense that a function f is partially computable in \mathcal{P} if and only if it is partially computable in \mathcal{P}' .

- 4. (a) For any n, prove that the function $f(x) = x^n$ is primitive recursive.
 - (b) Using part (a) and induction, prove that any polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

is primitive recursive (each a_i is a natural number).

5. Let $\pi(x)$ be the number of primes less than or equal to x. Show that $\pi(x)$ is computable.