
Question 1: Greedy. A coloring of a graph G = (V,E) is an assignment
of colors to the vertices of V . We say a graph is 2-colorable if it is possible
to color the vertices using only two colors such that adjacent vertices have
different colors.

• Give a polynomial time algorithm for the graph coloring problem.

• Argue that your algorithm runs in time polynomial in n, where n = |V |
is the number of vertices in G.

• Argue that your algorithm is correct.

• Give an example of a graph that is not 2-colorable.

Question 2: Divide and Conquer. Given is n particles placed at regular
intervals along a straight line; each particle j has a charge qj (either positive
or negative). A computational prediction of the force Fj on particle j, defined
by Coulomb’s Law, is equal to:

Fj =
∑
i<j

Cqiqj
(i− j)2

−
∑
i>j

Cqiqj
(j − i)2

,

where C is a constant. Assume that computing a term
Cqiqj
(i−j)2

can be done in
constant time.

• Give a trivial algorithm that computes the force Fj for all particles j
in O(n2) running time.

• Devise a divide and conquer algorithm that does the above job in
O(n log n) running time.

• Argue the running time and the correctness.

Question 3: Dynamic Programming. We are given a set {x1, x2, . . . , xn}
of n integers and want to know if there exists a subset S ⊆ {1, 2, . . . , n} such
that ∑

i∈S

xi =
∑
i/∈S

xi.

1

• Devise a dynamic programming algorithm for the partitioning problem
that runs in time polynomial with respect to n and W where W =∑n

i=1 xi.

• Argue the running time and the correctness.

Question 4: Dynamic Programming. You have q kids and they have
received a long candybar for sharing. You are now going to cut the bar into
q pieces by cutting it at q − 1 places so that the smallest piece is as large as
possible. You can, however, only cut the candybar at certain pre-specified
places.

Formally, given is an array A[1 : n] of of n positive integers. The weight of
a subarray A[i : j] is the sum A[i]+A[i+1]+ · · ·+A[j], where 1 ≤ i ≤ j ≤ n.
You want to cut the array into q subarrays such that the smallest weight
among subarrays become maximized (as large as you can).

• What would bet the running time for an exhaustive search method to
find the solution.

• Devise a dynamic programming algorithm that runs faster than ex-
haustive search method.

• Make a non-trivial example for which your algorithm works.

• Argue the running time and the correctness.

Question 5: NP-completeness. We say that a clause is proper if it
contains each variable at most once, and if it does not contain a variable and
its negation. For example, the clause x1∨x2∨x3 is proper, while the clauses
x1∨x1∨x2 and x1∨x1∨x2 are not proper. The decision problem PROPER-
k-SAT takes as input a formula ϕ with proper clauses each of length k. The
problem is to decide whether ϕ is satisfiable.

• Prove that PROPER-3-SAT is NP-complete (note k = 3).

2

