Quiz 4 Solution

Fatemeh Keshavarz

1.(a). Consider T = 100. And there are 3 items:

	G1	G2	G3
Profit	100	70	60
Weight	70	50	40

The greedy solution takes G1 which does not give a maximum profit. The highest profit can be gained by taking G2 and G3.

(b). Assume w_1 , w_2 , ..., w_n , T are strictly positive integers. Define m[i, w] to be the maximum value that can be attained with weight less than or equal to w using goods up to i.

We can define m[i, w] recursively as follows:

- m[0, w] = 0
- m[i, 0] = 0
- m[i, w] = m[i 1, w] if $w_i > w$ (the new good is more than the current weight limit)
- $m[i, w] = max (m[i-1, w], m[i-1, w-w_i] + p_i) if w_i \le w$

The solution can then be found by calculating m[n, T]. To do this efficiently we can use a table to store previous computations. This solution will therefore run in O(nT) time and O(nT) space.

So, having this algorithm:

```
Init m[0..n, 0..T]
For w = 0 to w = T
    m[0, w] = 0

For i = 0 to i = n
    m[i, 0] = 0

For i = 1 to i = n
    For w = 1 to w = T
        If (w<sub>i</sub> > w) then m[i, w] = m[i - 1, w]
        Else
        m[i, w] = max (m[i - 1, w], m[i - 1, w - w<sub>i</sub>] + p<sub>i</sub>)
```

The answer is in m[n,T].

(c). We use induction to prove this algorithm:

```
base: n = 0: m[0, T] = 0 (There is no good to take)

n = 1: m[1, T] = m[0, T] = 0 if w_1 > T else

= max (m[0, T], m[0, T-w_1] + p_1) = max (0, 0 + p_1) = p_1

which is optimal.
```

Now, assume algorithm is optimal for n goods. i.e. m[i, w] contains the optimal answer for $1 \le i \le n$, and $1 \le w \le T$.

We want to prove that it is optimal for n+1 goods, as well. Which means m[n+1,T] contains the optimal answer:

According to our definition of m[i, w];

If $w_{n+1} > T$ then m[n+1, T] = m[n, T] which is correct.

But, if $w_{n+1} \le T$ then $m[n+1, T] = max(m[n, T], m[n, T-w_{n+1}] + p_{n+1})$

Obviously, we have only two options for $n+1^{st}$ good:

- 1) whether to include it in answer. So, $m[n+1, T] = m[n, T w_{n+1}] + p_{n+1}$.
- 2) or not. So, m[n+1, T] = m[n, T].

And, in both cases $m[n, T - w_{n+1}]$ and m[n, T] contain optimal answers, in accordance with our assumption. Since we take the maximum of these two values, m[n+1, T] will contain optimal answer as well.