Solution to Quiz 2

Fatemeh

8 October 2010

Let denote the *n* items with i_1, \ldots, i_n . Each item i_k , has three parameters assigned to it, $(c_{i_k}, p_{i_k}, w_{i_k})$ where c_{i_k} denotes the time required for constructing the item, p_{i_k} for painting and w_{i_k} for wrapping it. According to the problem description, items can not be constuced concurrently but the painting and wrapping processes can happen in parallel for different items. So, we re-write the tuple assigned to item i_k as (c_{i_k}, pw_{i_k}) where $pw_{i_k} = p_{i_k} + w_{i_k}$ denotes the post-construction time for item i_k . Also note that once we line up the items on the construction line, we can assign e new parameter to each item that denotes the total time that will take the item to complete all the three processes with respect to where it stands in the line; $t_{i_k} = \sum_{j < k} c_{i_j} + c_{i_k} + p_{i_k} + w_{i_k} = \sum_{j < k} c_{i_j} + c_{i_k} + pw_{i_k}$. Here we assume that the items are lined up according to how they initially were indexed. The goal is to minimize the maximum value that t_k takes with respect to the arrangement of the construction line, i.e. minimizing $T = max\{t_{i_k}, 1 \le k \le n\}$.

 $Algo_1:$

- 1. Order the items decreasingly with respect to pw_{i_k} , $1 \le k \le n$.
- 2. The item with the maximum post-construction time goes first in the construction line.
- 3. Remove this item and repeat step 2 for the rest of the items.

Claime: $Algo_1$ is an optimal one.

Proof: Let $Algo_{opt}$ be another algorithm with an optimal T_{opt} that arranges items as $S = \{i_{o_1}, \ldots, i_{o_n}\}$. Using an "exchange" argument we show that by rearranging $Algo_{opt}$ according to $Algo_1$, the value of T_{opt} won't increase.

<u>Case 1:</u> If for every $1 \le k \le n$, $pw_{i_{ok}} \ge pw_{i_{ok+1}}$, then the two algorithms are suggesting a similar arrangement.

<u>Case 2:</u> Let j be an index for which

$$pw_{i_{oj}} < pw_{i_{oj+1}}.\tag{1}$$

We show that swapping the two items in the construction line won't increase T_{opt} , and hence by swapping any pair of items that have a similar property as Equation (1), we will end up rearranging the output of $Algo_{opt}$ according to $Algo_1$ while its optimality is preserved.

Let $T' = max\{t_{i_{oj}}, t_{i_{oj+1}}\}$. If we show that T' won't increase after swapping the two items, we conclude that so doesn't T_{opt} . (Note that $t_{v_{ow}}$ won't change for other items before and after swapping

 i_{oj} and i_{oj+1} .) To investigate the possible cases, we use an index 1 to refer to the arrangement before swapping the two items and index 2 indicates the parameters after swapping.

Now by simple math we can conclude that for any possible valuee of T'_2 , it always holds that $T'_1 \ge T'_2$. This completes the proof of the Claim. \Box