
CPSC 413 Fall 2010: Midterm November 2nd, 2010

Name:

ID#:

Instructions:

• No outside aids of any kind are allowed.

• You have 1 hour and 15 minutes.

• Do not turn this page until you are told to do so.

• There are four questions on this exam, and each question is worth a
total of 10 points.

1

1. (a) Define what it means for f = O(g) (3 pts).

f = O(g) if there is a natural number m ≥ 0 and a constant c > 0
so that for all n ≥ m, f(n) ≤ cg(n).

(b) Show that ln(n4) = O((ln(n))2) (3 pts).

Indeed,

lim
n→∞

ln(n4)

(ln(n))2
= lim

n→∞

4ln(n)

(ln(n))2
= lim

n→∞

4

ln(n)
= 0

so ln(n4) = O((ln(n))2).

(c) Suppose that we have two non-negative functions f, g such that for
n ≥ 100, f(n) ≤ g(n). Show that f + g = O(g) (4 pts).

For n ≥ 100, f(n)+ g(n) ≤ g(n)+ g(n) = 2g(n), so f + g = O(g).

2

2. Meghan is planning a cross-country trip along the Trans-Canada high-
way from Halifax to Vancouver. She knows the location of n gas sta-
tions along the trip (not neccesarily in order). Her car can only run k
kilometers before she must stop for gas.

(a) Give an algorithm that can determine the least number of gas sta-
tions she must stop at along her journey so that she never runs
out of gas, and show that your algorithm runs in O(n log n) time
(4 pts).

The idea is to take the farthest gas station until we would run out
of gas, each time. That is, the first station we pick is the highest
gi for which gi < k, then find the next one less than gi + k, and
so on. Here is the pseudo-code for this algorithm:

• sort the gas stations in increasing order of how far they are
from halifax, giving a set g1, g2, . . . gn;

• set i = 1;

• set c = k;

• initialize an empty list l;

• while c ≤ (distance from halifax to vancouver);

– if gi > c, add i − 1 to the list l and set c = gi−1 + c;

– increase i;

• endwhile;

• return l.

(b) Prove that your algorithm always return the minimum number of
gas stations (6 pts).

We will use a “stays-ahead” argument. Let ai be the gas stations
chosen by our algorithm. Suppose S is any other solution, which
chooses gas stations at locations s1, s2, . . . sk. Assume the si are
sorted by their distance from Halifax.

We claim that for any i, si ≤ ai. We prove this by induction on n.
For n = 1, since S is a solution, s1 ≤ k. But we chose a1 so that a1

was the furthest gas station less than k, so s1 ≤ a1. Now suppose
the result is true for n, so sn ≤ an. Since S is a solution, it must
choose a gas station k kilometers after sn, so sn+1 ≤ sn + k. But

3

sn ≤ an, so sn+1 ≤ an +k. But an+1 was chosen so that it was the
farthest gas station so that an+1 ≤ an + k. Thus sn+1 ≤ an+1 as
required.

We now prove that our algorithm is optimal. Since that O is an
optimal solution, and O uses fewer gas stations than A, say m of
them. Assume O’s gas stations are sorted by distance from Hali-
fax. By our previous claim, om ≤ am. But our algorithm chooses
at least one more gas station am+1, so am + k is less than the
distance to Vancounver. Thus, om + k is less than the distance to
Vancouver, so O cannot be a solution: contradiction. Thus O can-
not have fewer gas stations than our algorithm, so our algorithm
is optimal.

4

3. Suppose that a divide and conquer algorithm splits an input of size n
into 3 pieces, each of size n

3
, while the time taken to split and recombine

the data is O(n). That is, if T (n) is the running time of the algorithm
on n inputs, then there is some constant c so that

T (n) ≤ 3T (n/3) + cn and T (3) ≤ c.

Show that the running time of the algorithm is O(n log n) (10 pts).

We analyze the running time of the algorithm at each “level” of the
recursion. At the initial level, the total running time without the re-
cursive calls is cn. At the first level of the recursion, there are three
subproblems of size n

3
each, so the total is cn

3
+ cn

3
+ cn

3
= cn. At the

second level of the recursion, there are 9 subproblems of size n

9
each,

so the total is again cn.

It takes log3 n levels of the recursion to reach the base case, so our total
running time is

log3 n−1∑

i=0

cn = cn log3 n = O(n log n),

as required.

5

4. Given an array [a1, a2, . . . an] of distinct integers, say that ai is a local
minimum if ai is strictly less than both of its neighbours (an endpoint
is considered a local minimum if it is strictly less than its single neigh-
bour).

(a) Give an algorithm for finding a local minimum while only looking
at O(log n) elements of the array (5 pts).

The idea is to look at the middle element of the array. If it is a
local minimum, we are done. If it is not, there is an array element
on one side or the other that is higher. We recursively run the
algorithm on that half of the array. In pseudo-code:

• FindLocalMin(input: array A)

• if |A| = 1, return a1,

• else

– let ai be the middle element of the array,

– if ai is a local minimum, return ai,

– else if ai−1 < ai, run FindLocalMin on a1, a2 . . . ai−1,

– else run FindLocalMin on ai+1, ai+2, . . . an.

– endif

• endif

At each stage, the algorithm splits into a single recursive call of
size n

2
, and only spends constant time outside of the recursion. At

most, it takes log2 n recursive steps to reach the base case, so the
total running time is O(logn).

(b) Prove that your algorithm does find a local minimum (5 pts).

We need to check that an array element returned from a recursive
call is a local minimum for the entire array. If the element returned
checked both of its neighbours, then it is a local minimum for the
entire array. On the other hand, suppose the element v that was
returned did not check one of its neighbours w in the whole array.
However, by the construction of our recursive calls, v > w, so v is
larger than this neighbour. Thus v would be a local minimum for
the entire array.

6

