
CPSC 413: Assignment 1 Solutions

1. (a) Show that if f = O(g), then g = Ω(f).

If f = O(g), then there is some n0 and c > 0 such that for
all n ≥ n0, f(n) ≤ cg(n). Dividing both sides by c then gives
g(n) ≥ 1

c
f(n) for all n0 ≥ n, so g = Ω(f).

(b) Recall that n! = n(n − 1)(n − 2) . . . (2)(1). Show that n! = Ω(2n).

Consider

2n = 2 · 2 · 2 . . . 2 · 2 · 2 · 2 (n times),

= 2 · 2 · 2 . . . 4 · 2 · 2, (n-1 numbers)

≤ n · n − 1 · n − 2 . . . 4 · 3 · 2

= n! (so long as n ≥ 4).

Thus, for n ≥ 4, 2n ≤ n!, so n! = Ω(2n).

(c) How does n! compare to nn? Which is Big-O of the either? Prove

your claim.

We claim that n! = O(nn). Indeed,

n! = n(n − 1)(n − 2) . . . (3)(2)(1) ≤ n(n)(n) . . . (n)(n)(n) = nn

so n! = O(nn).

2. A toy company has n different toys t1, . . . , tn it could make, each with

an associated profit Pi. The company has m machines, and each toy

has an associated machine Mi on which it needs to be made. Their next

shipment can hold k ≤ n toys. Each machine can only make one toy

before they must be shipped out. Give an O(n log n) algorithm that de-

termines which toys the company should make so as to maximize their

total profit.

Our algorithm does the following:

• sorts the toys by profit, with the highest profit first,

1



• adds the highest profit toy, keeping track of which machine it is
made on,

• looks for the next highest profit toy which has not been made on
a previous machine, adding it,

• continue until k toys have been assigned.

Sorting the toys takes O(n logn), and then assigning the toys O(n), so
the total running time is O(n log n).

To show that this solution is optimal, let S be any choice of k toys
different than our solution A. Let i be the first point where the solutions
differ. Then, by definition of our algorithm, the profit of Ai must be at
least as large as the profit of Si, since they have the same set of toys
they can select from. Thus, exchanging Ai for Si will lead to a solution
that is as least as good as the original solution S. Thus, if S is optimal,
A must be as well.

3. Over the past several weeks, a bank has noticed that someone is at-

tempting to hack into their computer system. They have n differ-

ent times when they believe someone was trying to change their data:

times ti. However, this time is approximate, so for each time ti, they

only know that the incident occured somewhere between ti − ei and

ti + ei. Now, the company has found someone they believe is respon-

sible, and have a record of when they were accessing the system, at

times x1, x2, . . . xn. There are many thousands of these incidents, and

the company needs to find out if each access xi from this individual

matches up with a unique incident tj. So, they need to match each xi

to some unique span of time [tj − ej , tj + ej]. Give an algorithm that

can determine if such a match exists in O(n2) time.

We first mention two possible greedy algorithms which do not work.
One possibility is to order the ti, order the xi, then simply see if the
first xi matches up with the first ti, and so on. Return false if they do
not match up in this order. Consider an example where t1 = 6, t2 = 5,
e1 = 1, e2 = 10, x1 = 1, x2 = 6. In this case, the algorithm returns
false, since the earliest ti does not match with the earliest xi. However,
there is a solution: match x1 with t2 and x2 with t1. So this algorithm

2



is incorrect.

Another possibility is to try and match each xi with its closest ti. This
also does not always return a correct output. Consider the example
where t1 = 6, t2 = 5, e1 = 10, e2 = 1, x1 = 1, x2 = 6. Matching the
closest xi with the closest ti tries to match x2 with t1, but then cannot
match x1 with t2. However, there is a solution: x1 with t1, and x2 with
t2.

A greedy algorithm which does work is to go through xi’s in order, as-
signing it to an interval which overlaps it for which tj +ej is minimized.
Let us write Tj for the interval [tj − ej , tj + ej ]. Then our algorithm is:

• order the xi’s,

• let I be the set of all intervals,

• for each xi,

– find the intervals in I which overlap xi (O(n) time),

– if none exist, return false,

– otherwise, find the interval Tj for which tj + ej is minimized
(breaking ties arbitrarily, O(n) time),

– remove Tj from the list I,

• endfor,

• return true.

Note that the ordering of xi’s takes O(n log n) time, and the for loop
runs at most n times, with O(n) operations in each loop, so the total
cost of the for loop is O(n2). Thus, the total running time is O(n2).

To determine correctness, first note that if our algorithm returns cor-
rect, then it has found a solution, as the only time it assigns intervals
to a point is if they overlap that point.

Conversely, we must show that if there is a solution, then our algo-
rithm finds it. Suppose there is a solution S which assigns every point
to some intervals. We will use an exchange argument to show that

3



S can be modified so as to still be a solution, while also giving the
same intervals and points as our algorithm. Suppose that xi is the first
time our algorithm A does something different than S (this might be
the first point). If A returns false at this point, then there must be
no interval left that overlaps xi. But this is a contradiction, since S
is a solution, so there must be some interval remaining that overlaps xi.

On the other hand, A could simply assign a different interval to xi than
S does. Suppose A assigns xi interval Tj , while S assigns it interval
Tk. We want to change S so as to assign xi the interval Tj , but we now
must find a point to assign to interval Tk. Since S is a solution, there is
some other point xl which it assigns to Tj , so xl is in Tj . Since S is the
same as A before xi, xi ≤ xl. Moreover, by definition of our algorithm,
we know tj + ej ≤ tk + ek, and xi is in the interval Tk. Thus, we have

tk − ek ≤ xi ≤ xl ≤ tj + ej ≤ tk + ek.

Thus, xl is in the interval Tk, so we can assign xl to Tk and still have
a valid solution.

Thus, if there is a solution S, then we can modify S until it runs the
same as A. Thus if there is a solution, then A returns correct.

4. A number of developers are hoping to develop the land at the edge of a

circular lake. Each has requested to develop some portion of the edge of

the lake. Design an algorithm that runs in polynomial time and returns

the largest set of development requests so that no two overlap.

Clearly, this problem is quite similar to the interval scheduling prob-
lem we did in class (call this the linear scheduling problem). The only
difference is that there may not be a point at which there are no over-
lapping intervals. Thus, to modify this problem, we consider n different
instances of the linear scheduling problem, and take the best of those.

Consider the following algorithm:

• for each request n,

4



• remove all requests that overlap with the starting point of that
request, giving a new set of requets Rn,

• the set Rn has no overlap at that starting point, so it is an instance
of the linear interval scheduling problem. Find the solution to this
in O(n log n) time, giving a number of requests tn.

• Return the maximum of the tn’s.

Since we run the linear scheduling problem algorithm n times, the total
running time is O(n2 log n).

To check correctness, let O be an optimal solution, and let Ik be some
request in this optimal solution. Since O is a solution, no interval in
O overlaps the starting point of Ik. Thus, O is also a solution to the
problem Rk. By definition of our algorithm, our algorithm takes the
maximum of the solutions to each Rk, so our algorithm is as least as
good as this optimal solution, and is thus itself optimal.

5. The police are looking for houses which have particularly large elec-

tricity consumption. To simplify the problem, imagine that they are

investigating houses which are laid out on an n × n grid. Each house

on the grid has some electricity consumption, e(i, j). The police con-

sider the house suspicious if it has electricity consumption equal to or

greater than each of its vertical and horizontal neighbours. Design an

algorithm that runs in O(n) time and returns the location of a suspi-

cious house.

This is a difficult problem. I’ll build up to the solution by first con-
sidering two ideas which do not work (but intuitively work well) then
modifying the second idea to produce a correct solution. If you just
want to skip to the solution without explanation, it is in the middle of
page 8.

Let us call a suspicious house a “local maximum” to emphasize that a
suspicious house is larger than or equal to each of its neighbours. One
solution (which does not run in O(n) time) is to start at an arbitrary
point in the grid (say, in the corner), and compare that electricity con-
sumption to all houses adjacent to it. If it is at least as large as all

5



adjacent points, then it is a local maximum, and we are done. Oth-
erwise, there must be some house adjacent to it with strictly greater
energy consumption. Move to that house, and test all its neighbours.
Continuing in this way, our algorithm must terminate, since each house
considered has electricity consumption strictly greater than the last,
and we only have a finite number of houses to look through. Thus, this
algorithm will eventually terminate, and when it does, it has found a
local maximum. Call this algorithm “local search”. The only problem
with local search is that it in particular cases, it may have to consider
most of the O(n2) points in the grid. However, we want to run in O(n)
time.

Instead, we must find a way to focus on one of the four n/2 × n/2
quarters of the grid, and find a solution there. Since we are looking for
a total run time of O(n), we can spend O(n) time determining which of
the four of these subregions to consider, since, as we showed in class, an
algorithm that looks at one subproblem of size n/2 while only spending
O(n) time before and after the recursion has a total running time of
O(n). We will give an idea of how to do this, show that there is a small
problem with the idea, then modify the idea to give a correct solution.

The idea is the following: we begin by finding the maximum value in
the middle column of the grid. Call this point v. We then test the left
and right neighbours of v. If they are both less than or equal to v,then
v is a local maximum, and we are done. Otherwise, there is some house
to the left or right with strictly greater energy consumption; call this
point m.

We claim that there is a local maximum somewhere in the half of the
grid containing m. Indeed, imagine running the local search starting
from m. Since m > v, v has the largest value in the middle column, and
the local search always finds houses with strictly larger consumption,
a local search from m will never consider values in the middle column.
So, the local maximum it finds is somewhere in the half containing m.

Thus, we may as well restrict our attention to the half of the grid con-

6



taining m. Now consider all the houses in the middle row of this half,
and suppose w has the largest consumption of these houses. There are
two cases.

If m > w, then we claim there is a local maximum somewhere in the
quarter containing m. Again, if we ran the local search from m, then
since the local search always takes larger values and m > v, w (which
are the maximums in their column/row) we would never consider val-
ues in the middle row or middle column. So, there is a local maximum
for the whole grid somewhere in this quarter; we recursively run the
algorithm on this quarter.

The other case is when w ≥ m. In this case, we check the two houses
above and below w. If both of these are less than or equal to w, w is
a local maximum and we are done. Otherwise, there is some point k
adjacent to w where k > w. Running a local search from k would never
consider the middle row or middle column, since k > w ≥ m > v, and
w and v are the maximum in the middle row/column. Thus, there is
a local maximum for the grid somewhere in this quarter; we recusively
run the algorithm on this quarter.

Unfortunately, there is a subtle problem with the above idea. Suppose
one of our recursive calls returned a value that was a local maximum
for its subregion. There is no guarantee that this local maximum is
actually a local maximum for the entire grid - if the local maximum for
the subregion was on the border of the subregion, then there may be a
point outside the subregion, but adjacent to this point, that is greater
than this point.

However, by the arguments above, we still know that there is a local
maximum somewhere in the subregion that is a local maximum for the
whole grid. The problem is that our algorithm may return “false” local
maximums that are not this local maximum. We need some way to
exclude these false local maximums from consideration.

Now, in both of the above cases, just before our recursive call, we had

7



a point p in the subregion which was greater than all values on the
boundary of the subregion (in the first case, it was m, in the second
case, it was k). Thus, what we need to do, in addition to passing the
n/2 × n/2 grid to our recusive call, is also pass this point p and its
value to the recursive procedure. Now, we know that there is a local
maximum somewhere in this subregion that has value at least p. So,
when we test the maximum value in the middle column or middle row,
we first check whether this maximum is at least as large as p. If it is
not, we simply ignore it, and take the half which does contain p, since
we now know there is a local maximum there. If it is at least as large
as p and is a local maximum in this subgrid, then we can safely return
it as a local maximum of the entire grid, since this value is as large
as p, which is larger than other values on the boundary of the subgrid
with the whole grid. Finally, if it is at least as large as p and is not
a local maximum, we proceed in the direction which is larger, and are
guaranteed that a search from that point will never cross the line or
any other boundary in the entire grid.

The algorithm, in full, is as follows. We actually pass both the point p
and its value seperately, to deal with the initial case.

• LocalMax(Input n × n grid G, point p in the grid, value B)

• let v be a maximum value in the middle column (O(n) time),

• if e(v) < B, (then this maximum might produce a false result, so
we are going to ignore it)

– choose the half of the grid with p in it,

– let w be a maximum value in the middle row of this half,

– if e(w) < B run LocalMax on the quarter containing B, along
with p and B,

– if e(w) ≥ B and w is a local maximum, return w,

– if e(w) ≥ B and w is not a local maximum, choose the quarter
with a greater point m, run LocalMax on this quarter, along
with m and e(m),

• if e(v) ≥ B and v is a local maximum, return v (since it is larger
than B, it is a true local maximum for the whole grid),

8



• if e(v) ≥ B and v is not a local maximum,

– find a larger adjacent point k,

– choose the half of the grid with k in it,

– let w be a maximum value in the middle row of this half,

– if e(w) < k run LocalMax on the quarter containing k, along
with k and e(k),

– if e(w) ≥ B and w is a local maximum, return w,

– if e(w) ≥ B and w is not a local maximum, choose the quarter
with greater point l, run LocalMax on this quarter, along with
l and e(l).

To initialize the program, we simply run LocalMax on the entire grid
G, passing in an arbitrary point (say, the top left corner), with value
B = −∞. In this way, we are ensured that any points we consider on
the first run through the algorithm are larger than B.

To prove that this algorithm is correct, let G0 be the grid G, Gi be
the subgrid after the ith iteration of the algorithm, and pi be the point
chosen in the ith iteration to send to the next iteration.

Claim: For any n ≥ 0, e(pn) is larger than the values on the boundary
of grid G with the subgrid Gn.

Proof: by induction on n. For n = 0, Gn = G, so there is no boundary
and nothing to prove. Now assume the result is true for n, and consider
the point pn+1. By the algorithm, pn+1 is chosen so that it is larger
than any values on newly-created boundaries. Moreover, also by the
algorithm, pn+1 is at least as large as pn, which is, by the induction as-
sumption, larger than any values on the other boundaries. Thus, pn+1

is larger than all boundaries with G.

Finally, we can prove that this result returns a local maximum. By
definition of the algorithm, if x is returned at stage n, then x ≥ pn,
and x is a local maximum in the subgrid Gn. By the claim, pn is strictly
larger than any values on the boundary of Gn with G, so x is larger

9



than any values on the boundary of Gn with G, and so is a local max-
imum in the entire grid.

As mentioned at the beginning, at each stage, the algorithm considers a
single subproblem of size n/2, and takes O(n) time to determine which
subproblem to consider. As done in class, such a divide and conquer
algorithm runs in O(n) time.

10


