4 Galois Groups

definitions

Galois extension A Galois extension is an algebraic, normal, separable extension.

Galois group The Galois group, Gal(E:F) = Aut(E:F).

facts

Proposition 4.1. (*) Suppose \mathbb{K} splitting field of $f(x) \in F[x]$ irreducible. Then for any $\sigma \in Aut(K : F)$, $\sigma \alpha$ a root of f(x) if α a root of f(x) (σ permutes the roots of irreducible polynomials).

Proposition 4.2. If K is the splitting field over F of a separable polynomial f(x), then K : F is Galois.

Theorem 4.3 (Fundamental Theorem of Galois Theory). Let K : F be a Galois extension, G = Gal(K : F). Then there is a bijection {subfields E of K containing F} \leftrightarrow {subgroups H of G} under the correspondence $E \rightarrow$ elements of G which fix E and $H \rightarrow$ fixed field of H such that

- (i) If $E_1 \leftrightarrow H_1$, $E_2 \leftrightarrow H_2$, then $E_1 \subseteq E_2 \iff H_1 \ge H_2$ and $E_1 \cap E_2 = \langle H_1, H_2 \rangle$ and $E_1 E_2 = H_1 \cap H_2$, so there lattice structure in the diagrams are upside down to each other.
- (ii) [K:E] = |H| and [E:F] is the order of H over G.
- (iii) K: E is Galois with Galois group H.
- (iv) E: F is Galois \iff H normal, in which case $Gal(E:F) = G_{/H}$.

5 Finite Fields

definitions

characteristic of a field: The characteristic of a field \mathbb{F} is defined to be the smallest possible integer p such that $p \cdot 1 = 0$ if such a p exists and zero else.

artisinal mathematics

www.reluctantm.com